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It is well-known that the invocation of ‘equilibrium processes’ in thermodynamics is oxymoronic.
However, their prevalence and utility, particularly in elementary accounts, presents a problem. We
consider a way in which their role can be played by sets of sequences of processes demarcated by curves
carrying the property of accessibility. We also examine the vexed question of whether equilibrium
processes are necessarily reversible and the revision of this property in relation to sets of sequences of
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1. Introduction

The systems of classical thermodynamics — that is to say equi-
librium thermodynamics, as distinct from various possible exten-
sions to non-equilibrium situations — have no spontaneous
behaviour. The states of the system are equilibrium states and the
space E of these states is a thermodynamic system. All transitions
between states, called processes, are a result of an outside inter-
vention using a set of control variables. As Wallace (2014) points
out the name for the study of systems with this character is control
theory and the question to be asked is: Given the system is in a
particular state, can the control variables be manipulated to bring
the system into another specified state?

It is convenient to use the symbol E to denote both the ther-
modynamic system and its space of states. In the latter sense E is an
open convex set in R"*1 for some integer n> 0. The elements of the
state-vector X< E are extensive variables. Those of mechanical type
are referred to as deformation variables, with each being associ-
ated with an intensive control variable. Examples are the volume of
a fluid with associated control variable being the pressure exerted
by the force on a piston and the magnetic moment of a magnet
controlled by an applied magnetic field.'

E-mail address: david.lavis@kcl.ac.uk.
1 And it is, of course, the case that, once the equations of state relating the
extensive and intensive variables are known, the state of the system can be spec-
ified in a state space coordinated by a mixture of extensive and intensive variables.
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The characteristic feature of a thermodynamic as distinct from a
mechanical system is the presence of at least one thermal variable.
A system with exactly one thermal variable is called simple’ and
that one thermal variable can be identified with the internal energy
U.> We shall, henceforth, suppose that the system in question is
simple; so to be specific x := (xT,xP), where xT := U and &P is an n-
dimensional vector of deformation variables. A thermodynamic
process x— x/ is a manipulation of the control variables to change
the state of the system from x to x/. For this statement to make
sense we must assume:

The Hypothesis of Controllability: that all interactions be-
tween the system and its environment are controllable. This
includes not just manipulations of the control variables
associated with the deformation variables but also all other
means by which the internal energy can be changed.

The Hypothesis of Achievability: that a possible process is
achievable, exactly in a finite amount of time (which will
normally include a final ‘leave-it-alone’ stage, Wallace,
2014) by a purposeful manipulation of the control variables.

2 In the account of thermodynamics by Lieb and Yngvason (1999) a simple sys-
tem has this property together with a number of additional properties (op. cit.
Section 3), which do not concern us at this stage.

3 The thermal variable could be identified as the entropy S, but in most accounts
that is a derived quantity appearing later in the analysis.
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A number of points are of note:

(i) These hypotheses encompass the minus first law of ther-
modynamics of Brown and Uffink (2001).%

(ii) Although, as we shall see, the work of this paper has simi-
larities with that of Norton (2016), a significant difference
between us is his (implicit) rejection of the hypothesis of
achievability.”

(iii) The existence of a process x— x/ does not imply the passage
along a sequence of (equilibrium) states in E from x to x.
With some exceptions (e.g. Giles, 1964) accounts of classical
thermodynamics restrict, as we have indicated, the states of
the system to equilibrium states, meaning that the only
defined states of a process are its end points.

(iv) As a consequence of (iii), a process is specified in terms of its
end points together with a description of the manipulations
of the control variables used to bring it about.

(v) As a consequence of (iv), there will in general be many
different processes denoted by x — x7. Thus a useful concept is
that of accessibility (Buchdahl, 1966; Lieb & Yngvason, 1999).
The state x7 is accessible from x, written x<a- if there is at
least one process X — x/.

Accessibility x<xs can be unqualified, meaning that there exists
at least one among all the possible manipulations of the control
variables which can be employed to produce a process x— s, or
qualified, meaning that only certain manipulations are allowed. The
case of importance in the latter category is the implementation of an
adiabatic process as described in Section 2.1.1. Buchdahl and Lieb
and Yngvason consider only adiabatic accessibility, for which they
use the symbol ‘<’. We shall begin by considering unqualified
accessibility using ‘<’. If x<x/ and x/<x then x is said to be recov-
erable from x/ (and vice-versa),® denoted as x><xs, with x<<x/
asserting that x is irrecoverable from x/; that is x<x/ but not x/<x.
When we need to discuss adiabatic accessibility, recoverability and

irrecoverability we use 2 S and ‘<2 ’, respectively.

In Section 2 we discuss the weaknesses of the standard defini-
tion of an equilibrium process along a curve in E, emphasising the
distinction between this and the question as to whether the process
is reversible, and in Section 2.1 we propose replacement definitions
for both of these based on accessibility. Sections 2.1.1 and 2.1.2
apply these new definitions to adiabatic and isothermal pro-
cesses, respectively and Sections 3.1 and 3.2 discuss the cases of a
perfect fluid and a cycle of processes. We compare and contrast our
account with that of Norton (2016) in Section 4 and our conclusions
are contained in Section 5.

2. Equilibrium processes

At the outset there is a problem of terminology in the intimate
and often confusing relationships between:

4 They argue that none of the laws of thermodynamics actually asserts that a
system not in equilibrium attains an equilibrium state and that it does so must
constitute an addition law.

5 This is discussed in Section 5.

5 The minefield associated with the various uses of the term ‘reversible’ in
thermodynamics is carefully negotiated by Uffink (2001). He points out that some
confusion is generated in the English translations of the writings of Planck and
Clausius where the terms umkehrbarheit and reversibel are conflated to the single
word ‘reversible’. He recommends the use of the term recoverable when “the only
thing that counts is the retrieval of the initial state” (ibid, p. 316). Following this
advice we restrict the use of the term ‘reversible’ to situations where, within the
development of a picture of an equilibrium process, the path of the process is
reversed.

(a) a quasi-static process,
(b) an equilibrium process,
(c) areversible process.

This is compounded by the profusion of overlapping and
sometimes contradictory definitions of what is meant by a ‘quasi-
static process’,” containing as they do both a reference to what
such a process is and how it is implemented. Thus we read that
quasi-static processes are “those that may be considered as a
sequence of neighbouring equilibrium states” (Lebon, Jou, & Casas-
Vazquez, 2008, p. 4) and that “a quasi-static process is a change in
the state of the system that is conducted infinitesimally slowly
such that, at each instant, the system is in thermodynamic equi-
librium with its environment, and its thermodynamic properties
[---] remain well-defined throughout the process” (Samiullah,
2007, p. 608). Taken together we may infer from these quotes
that a quasi-static process is just an equilibrium process together
with some gloss as to how this process may be carried out. So, for
the sake of discussion, let us agree to take ‘equilibrium process’
and ‘quasi-static process’ as synonyms and pass to the more
interesting relationship between (b) an equilibrium process, and
(c) a reversible process. Norton (2016, p. 43) refers to “thermo-
dynamically reversible or quasi-static processes” at the outset of
his paper and tends throughout to treat them as synonyms.®
While, as we shall argue, reversibility (as distinct from recover-
ability) is a useful description only for equilibrium processes (and
our replacement thereof) the converse is by no means obvious.
Thus, for example, Buchdahl (1966, pp. 52—54) gives a proof of the
reversibility of quasi-static processes and MacDonald (1995, p.
1122) gives an example of a quasi-static irreversible process. In the
interests of clarity it seems important to keep separate the ques-
tion of the replacement for equilibrium processes and the second
question as to whether, and in what sense, they can be regarded as
reversible.

Let L£(xgp,x1) be a simple, directed and continuous curve in &
parameterized by x=x(1), for A=[0,1], with x(0):=x; and
x(1) := xq. The curve parameterized in the reverse direction is
denoted by £(x1,Xg).

Definition 1. L£(xg,Xx;) is an accessible curve if x(1)<x(V), V
0<A<Ar<.

It should be emphasised that just as accessibility can be un-
qualified or qualified, an accessible curve (that is to say the property
of having accessibility between all directed pairs on the curve) can
also be unqualified or qualified. And it is, of course, the case that a
particular curve may be piecewise divisible into parts having
different types of accessibility. In particular we shall be concerned
with the case where £(xg,X1) is an adiabatically accessible curve
and situations where the curve may be accessible but not adia-
batically accessible.

Consider now the:

Definitions 2.
2—1: An equilibrium process along the curve L£(xg,X1)

7 The literature for this is extensively documented and analysed by Norton
(2016). In consequence our comments are rather brief.

8 Although, in Sect. 7.9, he does discuss both reversible and irreversible equi-
librium processes, giving as an example the case of a perfect fluid where, along a
curve in the thermodynamic space, there can be both a reversible and a “fully
irreversible” process.
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(L (%o, %1)) = {

2—-2: An equilibrium process €(L(xg,%1)) is reversible if the
process €(L(X1,Xp)), using the same control variables, also exists.

Without prejudice as to whether these definitions are viable it is
clear that a necessary condition for an equilibrium process along
L(Xg,X7) is that the curve is accessible and the equilibrium process
will be reversible only if both L(xg,x;) and L(xq,Xy) are so
accessible.

2—1 is the definition of an equilibrium process in most texts on
thermodynamics; often taking (Pippard, 1961, p. 30) differential
forms in the extensive variables as instances of infinitesimal equi-
librium processes. But a process involving the application of control
variables will drive the system from equilibrium with the return to an
equilibrium state occurring only after the ‘leave-it-alone’ stage
which allows it to settle down. Thus equilibrium processes are
(Cooper, 1967, p. 174) “either a contradiction in terms or limits of
processes through non-equilibrium states which cannot be
described in terms of equilibrium theory.” Rather more forcefully
Norton (2016, pp. 43—44) observes that:

” «

Incantations of “infinitely slow”,“insensible” and “infinitesimal”
have no magical powers that overturn the law of the excluded
middle. Either a system is in equilibrium or it is not; it cannot be
both.

In Part II of his paper Norton undertakes an exhaustive analysis
of the way that this problem is treated (or elided) in the literature of
thermodynamics, supporting his contention (ibid, p. 45, our italics)
that”:

The label “thermodynamically reversible process” denotes a set
of irreversible processes in a thermal system, delimited by the set
of equilibrium states.

It is also worth noting his discovery that Duhem adopted a
similar approach. Thus:

Cette suite d’états d’équilibre «,(,7v,0d,... qui n'est parcourue
dans aucune modification réelle du systeme, est, en quelque
sorte, la frontiere commune des modifications réelles qui con-
duisent le systéeme de I'état 1 a I'état 2. (Duhem, 1902, p. 78, p.
78)

Norton proposes a particular reconception of equilibrium pro-
cesses based on the perception contained in these two quotations.
We shall develop a different account, also based on curves in E. In
both Norton's and our approaches the role of the curve £(xg,x7) is
one of delimiting, or synonymously of demarcating, a set of pro-
cesses. For the sake of the discussion, we shall call our proposed
relationship between processes and £(xg, x;) demarcation, allow-
ing reservation of the term delimitation'® to the corresponding
relationship proposed by Norton. The rest of this section describes

9 The use of the terms ‘reversible’ and ‘irreversible’ italicised by us in this quote
should be remarked upon. It is evident from our development that we would prefer,
at this stage, that they be respectively replaced by ‘equilibrium’ and ‘non-
equilibrium’.

10 Together, of course, in each case with related parts of speech.

By some prescribed manipulation of the control variables 1)
the state of the system passes along £(xg,X;)from xg to x;. [

the relationship of demarcation and, following examples in Section
3, Norton's account of delimitation is described and contrasted with
demarcation in Section 4.

At this point it is worth noting one common feature of both the
approach proposed in this paper and that of Norton. Arising from
our account so far it is clear that a thermodynamic system acted on
by control variables cannot always be in a thermodynamic equilib-
rium state identified with a point in E. Norton is not alone (see e.g.
Callen, 1985; Landsberg, 1956, p. 367, p. 96) in saying that the
system is then in a ‘non-equilibrium state’, although as pointed out
by Buchdahl (1966, p. 10) “this notion is [...] meaningless, for when
[the system] is not in equilibrium some of the [thermodynamic
variables] have no well-defined values.” This last assertion excepts
the case where, as in Giles (1964), the space of states is extended in
some way to include non-equilibrium states. However, as we shall
see in Section 4, Norton makes free use of the idea of a ‘non-
equilibrium state’ without such a defined extension.

2.1. The relationship of demarcation

Consider the sequence

Sm(L(Xo,%1)) := {X(4)[%(A;) € L(X0,%1),0
:Ao<l]<“'lm,]</1m:l} (2)

of points on the accessible curve £(xy,x;) and the sequence of
processes
X(Ao)—X(A1), X(M)—X(42), X(Am-1) = X(Am), (3)
demarcated by L£(xg,X). An illustrative example of this is given in
Fig. 1, where the processes are represented as broken lines, indic-
ative of the fact that they do not trace a path in E.

The definition 2—1, given above, is effectively the continuum
limit of the sequence of processes (3) as m— o in such a way that
the minimum distance between any two points of Sy (L£(Xg,X1))
tends to zero. The approach to this limit (if it existed) could be
construed in two ways: cause and effect.

The cause of a process is the manipulation of the control vari-
ables, and approaching the limit would mean that, for each process

Fig. 1. Comparison of delimitation and demarcation. The (continuous) accessibility
curve £(Xp,X;) contains the points of a sequence Sy (L£(Xp,%1)) (for m = 8). The cor-
responding sequence of processes demarcated by L£(Xp,x;1) is shown as broken lines
joining the points. The curve from Dy to Dy is representative of the set of curves which
are delimited by £(xg, %) as proposed by Norton (2016).
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in the sequence, these manipulations are weakened. The effect is a
succession of displacements x(4;) to ®(4;,1) between equilibrium
states on L£(Xg,X1). An underlying assumption here is that a slight
manipulation of the control variables will lead to only a slight
change of equilibrium state. More precisely:

The Hypothesis of Cause and Effect: that in most situations
as the manipulations of the control variables are weakened
towards zero, the difference between the initial and final
state of the process approaches zero.

is adopted.'! There is one obvious class of exceptions to this and
that arises from the presence of phase transitions, where a small
change in an intensive (control) variable will lead, in the case of a
first-order transition, to large changes in the extensive (state) var-
iables. For the sake of simplicity such situations will not be
considered here, supposing that the whole of the curve £(xg,x1)
lies in the same phase and away from any critical points where, in
the case for example of a fluid, critical opalescence entails large
inhomogeneities in densities which conflict with a simple idea of
the equilibrium state.

The hypotheses of controllability, achievability and cause and
effect combine to present a picture where finer and finer sequences
Sm(L(xg,%1)) of points along £(Xg,x;) are achieved by weakening
the manipulations of the control variables. However, as has already
been made clear, the limit of this succession does not exist. There is no
model of thermodynamics which includes the possibility of
manipulation of the controls to propel the system along £(xq,%1).
Rather £(x(,%1) ‘demarcates’ or is the ‘common frontier’ of the set
of all sequences of processes defined by S (L(Xg,%1)), ¥V m>0.
These can all be regarded as approximations to the ‘equilibrium
process’ defined by 2—1. But since this process does not exist we are
left only with approximations. With this in mind we propose that
Defs. 2 are discarded and substituted by:

Replacements for Definitions 2:

2—1*: An equilibrium process along the curve £(xg,X;) is the
set of all sequences of processes (3) between the points of all
Sm(L(xg,%1)), V integers me (0, ), demarcated by L£(xy,%x;) and
resulting from certain allowed manipulations of the control vari-
ables. This set of sequences of processes is denoted by £(xg, X1|S),
where S is the statement which describes the allowed manipula-
tions of the control variables; that is the type of accessibility.

Of course, given a particular curve £(Xg,X1), £(Xp,X1|S) may not
exist in that there are no sequences of processes for that specifi-
cation of accessibility S.

2-2*: L(x9,%;|S) is a reversible equilibrium process if both it
and L£(x1,X0|S) exist. If £(xp,X1|S) exists but not £(x1,Xg|S) it is
irreversible.'”

It should be noted that our notation £(xg,%|S) is intended to
emphasis the primary role of the curve L(xp,x;) and the

1" One might be tempted to replace the latter part of this statement by reference
to the ‘deviation of the state from equilibrium during the process’. However, there is
not, without an extension of the theory, a metric for measuring deviations from
equilibrium. Whereas a metric for distance between two equilibrium states is easily
defined.

12 1t is a moot point whether we use the terms ‘reversible’ and ‘irreversible’ or
‘recoverable’ and irrecoverable’ here. However, since we would argue that the
former terms have no role other than that given to them here, and that they reflect
the reverse parametrization of the curve, we propose to adopt this terminology.

13 The most comprehensive account is given in Lieb and Yngvason (1999), with
briefer versions in Lieb and Yngvason (1998, 2000).

accessibility designation S. Once these are both specified the se-
quences of processes are secondary in that they are entailed by
L(Xg,%1) and S.

It can be seen from the work of Lieb and Yngvason'? that a full
account of thermodynamics can be given with little reference to
curves of states in E. The important property is that of accessibility
(and more crucially adiabatic accessibility) between pairs of states.
The role of accessible curves and sequences of processes demar-
cated by the curves is largely heuristic. It nevertheless remains to
show that they provide an adequate substitute for the usual
approach to thermodynamics. But before doing this we need to
further distinguish between types of accessibility and reversible
and irreversible equilibrium processes. As we have indicated,

The Hypothesis of Accessibility and Recoverability: x <x/, V
X, X/ 8. Meaning, of course, that every state is recoverable
from every other state. £(Xg,X1|S) and L£(X1,Xp|S) exist, V
L(Xp,%1) and some S.

accessibility, in its general unqualified form, has been defined to
allow all possible manipulations of the control variables and a
usually hidden axiom of thermodynamics is'*:

The latter part of this statement is our version of Norton's ex-
istence assumption (op. cit. p. 45). Of course, not all curves are
adiabatically accessible. If they were the second law of thermody-

namics would be false.

2.1.1. Adiabatic processes

Adiabatic processes and adiabatic accessibility are a conse-
quence of restrictions placed on the control-variable manipulations
which can be involved in implementing the process.”” The assertion
that “an adiabatic process is characterized physically by the
absence of any thermal interaction between the system and its
environment” (Boyling, 1972, p. 36) leaves some uncertainty about
what counts as a thermal interaction, or more specifically what is
allowed as a ‘non-thermal’ interaction. According to Lieb and
Yngvason (1999, p. 17)'¢:

A state &/ is adiabatically accessible from a state x if it is possible
to change the state x to &7 by means of an interaction with some
device (which may consist of mechanical and electrical parts as
well as auxiliary thermodynamic systems) and a weight, in such
a way that the device returns to its initial state at the end of the
process whereas the weight may have changed its position in a
gravitational field. Thus the only work done is by/to the weight
and the loss/gain in its potential energy will be equal to the gain/
loss of internal energy in the system.

The point about an adiabatic process, as stated in the first law, is
contained in the last sentence in this quote; the work done on/by
the system by/on its environment is equal to the increase/decrease
in internal energy. Lieb and Yngvason make this specific by

4 The use of the accessibility condition S in this hypothesis needs a slight gloss in
two respects. Firstly, as indicated above, the curve L£(xy,x;) may be piecewise
divisible into parts with different manipulations of different control variables
needed to achieve accessibility. Secondly, different manipulations of different
control variable may be needed for accessibility for £(xg,x1) and £(x1,Xp). S is the
union of all these different types of manipulation.

15 As already noted, Lieb and Yngvason use < to denote adiabatic accessibility,

. A . . . . A A
while we use < to denote this more restricted accessibility, with x><x7 and x << x/
replacing x><x/ and Xx<<x/, respectively.

16 We have adapted slightly to our notation.
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following Joule (1850), who used a weight falling under gravity as a
measure of the work done on a system in his discussions of the
mechanical equivalence of heat. Once this is done all manner of
ingenuity can be used to link the falling weight to the system,
leading to a variety of possible changes to the state of the system,
predicated only on the linking mechanisms returning to their initial
states. An obvious example is a set of levers causing the expansion
or compression of a fluid. Here there is a change in a deformation
variable. However, a too close association between adiabatic pro-
cesses and changes in the deformation variables would be a
mistake. A falling weight can be used to cause rubbing, stirring or
electrical heating of a system without any change in the deforma-
tion variables. We should, however, note that the comment by Lieb
and Yngvason (op. cit. p. 18) that:

In the usual parlance, rubbing would be an adiabatic process,
but not electrical ‘heating’, because the latter requires the
introduction of a pair of wires through the ‘adiabatic enclosure’.

is at variance with Buchdahl (1966, Sect. 1.8) who asserts that:

[A system in an adiabatic enclosure] may incorporate a stirrer, or
an electrical resistance through which a current may be passed
from outside the enclosure, and so on. Then the passage of such
a current, movement of the stirrer, variation of the deformation
coordinates, are all to be counted as mechanical processes.

There is, however, a novel element in Lieb and Yngvason's
definition and that is the inclusion of an “auxiliary thermodynamic
system”. This lies at the heart of the proof that all Cartesian prod-
ucts like E; x &, of simple systems E; and E, are comparable. That
is to say, for all pairs of states X;,¥; €&, and X;,X, €&, either

(x1,x2)2(x/1,x/2) or (xﬁ,x’z)i(xl,xz).

An illuminating element of Lieb and Yngvason's account of
thermodynamics is the use of forward sectors (Lieb and Yngvason,
op. cit. Sects. 2.6 and 3.3). The set

Fx := {XIEE

xéx/} (4)

is the forward sector of x which is shown to have the properties
that:

(a) Fy is a relatively closed convex subset of E."”
(b) The boundary 8Fx €& of Fx contains x and:
(i) X< xoxr<0Fy; that is 0Fy is an adiabatic surface.
(ii) x<< xr<x/=Fy°, the interior of Fy.
(c) Forward sectors are nested with:
(i) X/%\< xoFy = Fy.
(i) x<<xr<Fy CFy.
(d) For positive absolute temperature'® 8Fy is concave upwards
with respect to the direction of the thermal axis.

An interesting difference between the approach of Lieb and
Yngvason and accounts of thermodynamics based on the statement
of the second law by Carathéodory (1909) ¥ is that in the latter case
(see, e.g. Buchdahl, 1966; Chap. 5) the existence of entropy and
temperature are derived as consequences of the second law,

17 Relative closure is needed since Fy is bounded in part by the boundary of &
which is an open set.

8 The case of negative absolute temperature is of interest, but will not be
considered here.

19 This appears as his Axiom II on page 236.

whereas in the former, the existence of an entropy function S(x)
and temperature T(x), with entropy having the appropriate addi-
tive and scaling properties and such that

xLx o S(x) <S(xr), (5)
A
X><x < S(x)=S@x),

and Carathéodory's form of the second law are all consequences of
the axiomatic structure.
It follows, from Def. 1 that £(xg,%,) is, V i<j:

(i) Adiabatically accessible if x(;) €Fy;, or equivalently that
S(x(4)) < S(x(4))),

(ii) Adiabatically reversible if x(1;) €0Fy;,, or equivalently that
S(x(4;)) = S(x(4;)),

(iii) Adiabatically irreversible if x(1;) €Fy; ) or equivalently that
S(x(A)) <S(x(4).

An adiabatic equilibrium process L(xy,x;|A) is defined as in
2—1*, with A describing the manipulations allowed for adiabatic
processes. Reversible and irreversible adiabatic equilibrium process
are similarly defined like 2—2*.

It follows that, for £(xg,%;|A):

(a) Entropy increases from xg to x;.

(b) Entropy strictly increases from Xy to x; if £(xg,%1|A) is irre-
versible, and this is the case iff, for all sequences (2),
FX(Zj) CF;()\I_) , v l<]

(c) Entropy remains constant if £(xg, X1 |.4) is reversible, and this
is the case iff £(xg,x1) CFx,.

2.1.2. Isothermal processes

A process x— &/ is isothermal iff the temperature is the same at
the beginning and end of the process; thatis T(x) = T(xr). It follows
from the hypothesis of accessibility and recoverability that there is
a recoverable isothermal process between a pair of points x,x’€E
iff T(x)=T(xr). L(Xg,x) is an isotherm if T(x(1)) =T(xg), V
A€[0, 1] and then the processes of any sequence demarcated by the
curve and in either direction are isothermal. Denoting by Iy the
manipulations needed to effect processes between points with
equal temperature T, the isothermal equilibrium process
(X9, %1 |I7) is defined as in 2—1*. It exists iff £(xg, %7 ) is an isotherm
at temperature T and then it is always reversible.

Isotherms lie on isothermal surfaces in E.>° Remembering that
the one thermal variable xT of Z is the internal energy U, the
temperature is given by

T ,D\\ !
T(x)_<M> . (6)

oxT

A standard method to implement the manipulations described
by I7 is to use an isothermal reservoir Eg. This is a simple system
whose temperature Tz remains constant, by virtue of its entropy
being a linear function of its thermal variable x%, and such that, in
any process its deformation variable x]}-;’ also remains constant. This
means that the only processes allowed are demarcated by the
thermal x§-axis with T(xg) := Tg.

20 Although, certain properties of continuity and smoothness, with which adia-
batic surfaces are endowed in the account of Lieb and Yngvason, are not necessarily
shared by isothermal surfaces.
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Given that E is in state ¥y with T(xy) = Tg, E and Eg, in state Xgq,
can be placed in thermal contact to form the joined system E in
state X := (x(,xD,xR), where X, = x} + xk,, without any flow of
internal energy in terms of heat between & and Eg.?' Consider now
the adiabatic accessible curve Z(Xy,%;) in E and an adiabatic pro-
cess X(1;) —>X(1;, 1) in a sequence like (2) demarcated by Z(Xg, ;). If
E were split and rejoined at the end of each process in the sequence
this would correspond to processes X(4;)—x(4;1) and
Xr(4)) = Xr(Ai11) demarcated by isothermal curves L(xg,x;) and
Lr(XRo,Xr1) in E and Eg respectively. The set of all sequences of this
type for E is simply the isothermal equilibrium process
£(XO7X] ‘[TR)‘

According to the first law of thermodynamics, for adiabatic

accessibility, if 2‘&227/ there exists an adiabatic work function
W(x,%x/), which satisfies appropriate transitivity, additivity and
scaling properties. It can also be shown (Boyling, 1972, p. 38) that
WX, %) =X —x".?> Then

Wi := W(R(%), ®(%i1)) = —Aixg — Aix" (7)

is the work done by E on the environment during the adiabatic
process X(4;) —X(4,1), where

Aixg =X (A1) — Xg (&), AT = xT (A1) — XT(4). (8)

Given that heat Q; flows from Eg into E and work on the envi-
ronment is performed entirely by E,

Aixg = ~Qi, AT =W+ Q;, 9
%’ — ASg < AS. (10)

AiSg = SR(Xr(Ai+1)) — SR(XR(47)), A;S :=S(X(A1)) — S(x(4;))-

(11)

As we have noted in point (v) in Section 1, ¥(4;) —X(4;,1) does
not represent a unique specification for the way that the state x(4;)
of B is changed to x(};,1). With fixed A;xT and A;S these different
possibilities correspond to different inputs Q; and W;, and conse-
quentially different resulting states xg(4;,1) for the reservoir such
that Q; < TrA;S and W; = Q; — A;x". Although a strict inequality in

(10) implies that ®(4;) <Q X(A;,1) this does not imply (non-adiabatic)
irrecoverability in E. For ¥(4;,1) —X(4;) one simply needs inputs Q/
and W satisfying Q/ < -TgA;S and W] =Q/ + AxT  giving
Xr(Ai11) —XR(4;); meaning that the final state of the reservoir for

this process is in general different from the initial state &g (4;). That

is, except in the special case where X(4;) S X(Ai+1), with equality in
(10), when there are processes X(4;) —=x(4;,1) and X(%;.1)—&(4;)
with Q/ = —Q; and W] = —W,.

The relationships (9)—(11) apply to sets of sequences (3) of
processes X(4;)—X(4; 1) for E and thus to the equilibrium
isothermal process £(Xq, %1 |Ir,).

21 That systems can be thermally joined and subsequently split as described here,
follows from the axioms of Lieb and Yngvason. In most presentations of thermo-
dynamics it tends to be regarded as self-evident.

22 In fact the proof demands that Z is an adiabatically directed set, a condition
which Boyling incorporates into his statement of the first law. That the increase in
internal energy of the system is equal to minus the work done during the process is
just due to a convenient choice of sign.

3. Examples

We now consider examples of accessible curves in a perfect fluid
and of those forming a cycle between two reservoirs. As indicated
above, we shall take these curves as demarcating sequences of
processes and thus, together with a description of the accessibility,
as defining equilibrium processes. Norton also uses these examples
to illustrate equilibrium processes. The difference, as we shall
explore it in Section 4, is in the relationship between the sets of
processes and the curve for which he uses the term delimiting and
the sets of sequences of processes and the curve for which we use
the term demarcating. In most of this section the terms ‘demar-
cating’ or ‘delimiting’ can equally well be used since the exact
relationship between the curve and the processes is not critical.

3.1. The perfect monatomic fluid

For a perfect fluid of N monatomic particles of mass m, E can be
taken to be the space of x := (u,v), where u and v are respectively
the internal energy and volume per particle. The entropy per par-
ticle is*?

3 5 3 4mm
S(u,v) :=c+35In(u) +In(v), where C':§+§ln(3h2)’

(12)

and h is Planck's constant. The temperature and pressure, given
respectively as

as\ ' 2 os T(u,v) 2u
T(uﬂ/): <@) :§u7 P(u,U):T(u7U)&:¥:§7
(13)

are the control variables, with the effect of the pressure produced
by the force exerted on a piston closing the cylinder containing the
fluid, and the temperature mediating the internal energy through
equilibrium contact with an isothermal reservoir, as described in
Section 2.1.2. In the space E given in Fig. 2, the forward sector of x4
(and x¢) is shaded and bounded by the adiabat through these two
states. Thus the adiabatic equilibrium process L(x4,Xc|A) is
reversible and £(x4,x5|A) and L(Xc,Xp|A) are irreversible. In addi-
tion because of the special relationship, given in (13), between the
temperature and internal energy in a perfect fluid T(x4) = T(xp);
L(X4,p) is an isotherm and the (reversible) isothermal equilibrium
process £(xA,xB{ITA) exists. Then:

e Adiabatically irrecoverable processes delimited/demarcated by
L(Xc,xp) can, as described in Section 2.1.1, be implemented by
introducing an electrical heating element into the fluid and
powering the current by the falling of a weight.

Norton (op. cit. p. 57) proposes two possible ways to implement
a sequence of adiabatically irrecoverable processes delimited (in
his case, but equally well demarcated in our case) by £(x,4,xp). In
the first the cylinder is thermally isolated and a sequence of
closely-spaced membranes contain the fluid in a part of the
cylinder with volumes vy =: v(Ag) <v(41) <--- <v(Am) := vg. The
membranes are successively broken with the fluid expanding
without work being expended or the internal energy changing.
Alternatively the piston closing the cylinder could be such that

23 Variables are given here in the field—density representation of Lavis (2015) in
which entropy and temperature absorb Boltzmann's constant to become, respec-
tively, dimensionless and of the dimensions of energy.
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0

u

Fig. 2. The space E for the perfect monatomic fluid. A, B and C label the states x4, x5
and x¢ . The forward sector of the adiabat through A and C is shaded.

its motion is so impeded by friction that it barely moves. In a
succession of small expansions the work expended on it by the
fluid is returned to the fluid as heat generated by the friction.
From (12) the adiabat £(x,, x¢) has u3v2 equal to some constant
value. This curve delimits/demarcates a sequence of processes
where the fluid in the cylinder is thermally isolated and the
piston reduces or increases the volume in small steps. For each
process the work done on or by the piston is equal to the change
in internal energy.

3.2. A cycle of processes

We now consider the classic case of four states x4, Xz, Xc,Xp €&,
with BC and DA being adiabats linked by isotherms AB and CD at
temperatures Ty > T¢p, as shown in Fig. 3. As in our previous dis-
cussion the adiabats and isotherms delimit/demarcate sets-of/sets-
of-sequences-of processes. In the case of demarcation (but not
delimitation) relationships obtained for the individual processes of
the sequence can be summed to yield relationships applying to the
whole curves. In this respect it should be noted that Lieb and
Yngvason (op. cit. p. 73) derive the same results, simply considering
the processes between the four points of the cycle without any
mention of the curves which can connect them

The isothermal processes are effected by thermally joining E to
isothermal reservoirs and, from (8)—(11), the changes in internal
energy and entropy and the work performed on the environment
and heat absorbed by the system are given (with obvious notation)
by

Xp — Xp = Qap — Was, %SSBC*SDM (14)
xh —x{ = Qcp — Wep, %SSDA_SBC (15)

for processes x4 —xg and xc — Xp, respectively. For adiabatic pro-
cesses Xg —Xc and Xp — Xy,

Xt —Xp=—Wge, x3—xp=—Wpy. (16)

Regarding the system as a heat engine, when heat Qs3>0 is

D

Fig. 3. A cycle of states. A, B, C and D label the states x4, X5, Xc and xp. AB and CD are
isotherms and BC and DA are adiabats.

extracted from the hot reservoir and total work Wy = Wyp + Wpc +
Wep + Wps performed on the environment, the heat —Qqp>0
input into the cold reservoir is regarded as wasted. The efficiency of
the heat engine

e i 1- S22l el0.1] (17)

increases as the quantity of wasted heat decreases, with from (14)
and (15),

T
7]1—[531*%=5Uc<1~ (18)

The cycle becomes a Carnot cycle with Carnot efficiency 7c
when the inequalities in (14) become equalities. Then there is no
increase in entropy in the adiabatic processes for the system ther-
mally joined to the reservoirs and the cycle is reversible. That the
efficiency is bounded above by the Carnot efficiency so that the
wasted heat cannot be reduced to zero is equivalent to the Kelvin-
Planck version of the second law for positive temperatures.’*

4. Delimitation or demarcation

Given the curve £(xg,x;) of equilibrium states in the thermo-
dynamic space E, the aim, both of the present work and that of
Norton (2016), is to present a credible alternative to the incredible
idea that processes exist in which the state of the system changes in
a continuous manner along £(Xg,X1). In each approach sets of
processes are in some way related to £(xg,x1). We have found it
convenient to coin a distinction between the terms delimitation and
demarcation to describe the accounts of this relationship in Nor-
ton's and our work, respectively. To explore in detail the difference
between these two approaches it is necessary first to review the
fundamental perception of the nature of thermodynamics adopted
in this paper with a view to exposing the different underlying ac-
count implicit in the notion of delimitation.

In Section 1 we asserted that the states of thermodynamics are
equilibrium states identified with points in a space E of extensive
variables. Implicitly understood here is that equilibrium states are

24 This version of the second law is violated for negative temperatures.
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states attainable by the system and explicitly stated is the assertion
that the system will leave its equilibrium state only by the agency of
the control variables, with all the interactions between the system
and its environment being of this kind (the hypothesis of control-
lability). A process is then defined as a manipulation of the control
variables to change the state of the system, with all possible pro-
cesses being achievable exactly and in a finite amount of time (the
hypothesis of achievability). That this is essentially the basis for
‘ordinary’ thermodynamics can be seen from almost any standard
account. Thus:

(i) “Given any physical system [...] a finite set of finite macro-
scopic variables [...] can be listed, such that knowledge of a
set of values of these variables defines one of a known
sequence of equilibrium states of the system,” (Landsberg,
1956, p. 365).

“The equilibrium of a thermodynamic system is character-
ized uniquely by the values of a finite set of physical quan-
tities,” (Buchdahl, 1966, p. 9) and “systems which cannot
attain equilibrium under appropriate experimental condi-
tions will henceforth be excluded from consideration,.”(ibid,
p. 8).

“Operationally, a system is in an equilibrium state if its
properties are consistently described by thermodynamic
theory,”?> (Callen, 1985, p. 15) and “a real process always
involves non-equilibrium intermediate states having no
representation in the thermodynamic configuration space,”
(ibid, p. 96).

(ii

~

(iii

—

That this picture constitutes ordinary thermodynamics is effec-
tively acknowledged by Norton (op. cit. p. 50, our italics) when he
writes that his account of equilibrium processes (as we describe it

below)?:

[...] includes an existence assumption.”’ Whether it obtains
depends on the physics governing dynamical processes. It most
likely does not fail as long as we neglect the molecular consti-
tution of matter. More precisely, it will hold most likely in a
fictitious world in which ordinary thermodynamics holds exactly at
all scales.

In Norton's delimiting relationship the sequence of processes
(3), which in our scheme is demarcated by £(xg, X1 ), is replaced by a
single process passing through a succession of non-equilibrium
states. Such a process is shown by the curve between Dy and D,
in Fig. 1; this being represented by a broken line to indicate that
none of its points (including its end points) lie in the space E of
equilibrium states. Then the two pictures are:

e In our case, as specified in Def. 2—1%*, the set of all sequences of
processes demarcated by £(xg,x1).

¢ In Norton's case the set of non-equilibrium processes approxi-
mating ever more closely to the delimiting curve £(xg,%1).

Common ground is that there is no limit which can be called an
equilibrium process and which corresponds to passage along the
curve itself. Instead the set of sequences-of-processes/non-

25 In the text this quote is italicised and terminated by an explanation mark to
highlight the circular nature of this sentence as a definition of equilibrium. How-
ever, it is observed that this circularity is “not fundamentally different from that of
mechanics”.

26 Again, as we have already observed, his preferred term is ‘reversible processes’.

27 This, as indicated above, is effectively equivalent to our hypothesis of existence
and recoverability.

equilibrium-processes is itself taken to be the equilibrium process
(our Def. 2.1* and Norton's definition at the beginning of his Sect.
2.2). However, Norton (op. cit. p. 45) argues that “while they may
come arbitrarily close, none of the states of the irreversible pro-
cesses are exactly equilibrium states. For otherwise the processes
cannot complete in any finite time.” We have already argued that
the use of the designation ‘irreversible’ in these quotes is a
distraction. The substantive point, as his Fig. 1 (again on the same
page) makes clear, is that these processes are between non-equi-
librium states including their initial and terminating states. This
denial of our achievability hypothesis has profound consequences.
It effectively asserts that a thermodynamic system with a space of
equilibrium states can never be said to be in any of these states. Or
at least, if by some remarkable circumstances we encounter it in an
equilibrium state, any processes effected by the control variables
will force it to leave the state and ever after to wander in a wil-
derness of (undefined) non-equilibrium ‘states’. This strikes at the
heart of what is meant by an equilibrium state and a process in
ordinary thermodynamics. It also has a further difficulty in the
present context, where closeness to the curve £(xg,X7) is an issue.
For the sequence of processes (3) defined by the sequence of points
Sm(L(xg,%1)) on L(Xg,x1) closeness is simply defined by increasing
m and decreasing the maximum distance (in some well-defined
metric) between any two points of the sequence. In terms of the
delimiting process where closeness is between non-equilibrium
and equilibrium states there is no corresponding metric.

In Sect. 7 of his paper Norton lists eleven attempts to solve the
problem of equilibrium processes all of which, in his view, “are
[either] incomplete or [...] include provisions that contradict one
another, so that the characterization overall is a contradiction when
read literally.” The last of these, that of ‘iterated equilibria’, ap-
proximates most closely to our own proposal. For this Norton ref-
erences a number of authors of which O'Connell and Haile (2005)
can most usefully be studied.

4.1. Iterated equilibria

O'Connell and Haile (op. cit. Sect. 1.3) define A to be the net
driving force acting on a system during a process.”® They then
define d as the “differential analogue of A” which produces a “dif-
ferential process”, which is their definition of a “quasi-static pro-
cess”. A finite process is then understood as the “stringing together
[of] a sequence of quasi-static steps”. From an equilibrium state the
differential driving forces are used to take a step and then the
system is allowed to relax back to equilibrium. Repeating this
process many times generates “a sequence of points that represent
a process path on a state diagram”. For the curve L(xg,x1) this
picture is essentially that given by the sequence of processes (3),
where the set of points Si (£(Xg, X1)) on the curve are close enough
so that their separations can be understood as represented by dif-
ferentials in the state variables. At this point there is a further
discussion, which will not detain us, arguing that this quasi-static
process along the curve is not necessarily reversible. The salient
point is that this picture is one of a sequence of process between
‘differentially spaced’ equilibrium points on the curve. It is thus of a
‘differentially spaced’ member of the set of sequences of processes
which we used, as shown in Fig. 1, to define the equilibrium process
L(Xg,x1|S) demarcated by £(xg,X1).

28 They divide this into an external and internal part. The former can be under-
stood as the effect of the control variables and the latter as the sum of forces
generated within the system during the process, which decay during the leave-it-
alone stage referred to in our hypothesis of achievability.
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The problem identified by Norton in this approach is the one
with which we are now familiar, that “no single jump [of this string
of quasi-static processes] can complete, if it is to terminate in an
equilibrium state.” And this, at its heart, arises from a fundamental
difference in the standpoint of this paper, as described in Section 1
and summarized at the beginning of this section, and that of Norton
with regard to the nature of thermodynamics. A difference which is
often highlighted by the task of writing about or teaching classical/
ordinary thermodynamics. There the temptation, even in quite
formal accounts, is to appeal to the underlying microstructure. If
such references are of an informal kind they can, of course, be of
heuristic value. However, they can lead to problems.

An interesting example of this appears on page 17 of the
otherwise very formal account of Lieb and Yngvason (1999). They

observe that, for x, x’ € E, “when xix/ and also xléx, [...] the state
change can only be realized in an idealized sense, for it will take an
infinitely long time to achieve in the manner described;” that is to
say using the mechanism for implementing an adiabatic process set
down by Lieb and Yngvason and given above. Given that the very

A
notion of the adiabatic accessibility x<x/, as used by Lieb and
Yngvason, inhabits the fictitious world of ordinary thermody-

namics, it is by no means obvious that XQX/ and x/Qx cannot both
apply without the need for an infinitely long time of implementa-
tion. Or more precisely, do adiabatic processes implementing x— x/
and x7— x both take an infinite amount of time to complete, or just
one of them in virtue of the existence of the other? If the latter is
intended it is presumable because the state x, which is the initial
point of x—x/, is impossible to attain exactly in finite time as the
destination of X/ — x. But, if that is the case, it applies to all processes,
and we are back to the situation discussed about, where the system
never inhabits an equilibrium state. That there is a minefield here
appears to be conceded by Lieb and Yngvason when they propose
to avoid “this kind of discussion” by taking the definition of adia-
batic accessibility “as given”, and this is the spirit in which they
proceed in the rest of their paper.

5. Conclusions

The problem of the oxymoronic nature of equilibrium processes
is a problem within the structure of ordinary thermodynamics.
There is an inherent conflict for a traditionally-understood equi-
librium process between the role of the control variables as the only
means of altering the equilibrium state of the system and the
assumption that they cause the system to be disturbed from equi-
librium. Our suggested solution to this problem based on sets of
sequences of processes demarcated by a curve of equilibrium states
remains firmly within the corpus of ordinary thermodynamics. The
alternative solution proposed by Norton based on sets of non-
equilibrium processes delimited by the curve of equilibrium

states strays beyond the boundaries of ordinary thermodynamics
and raises the problems we have discussed in the previous section.

The motivation of this work is the same as that of Norton, that is
to repair in some way that part of the standard account of classical
thermodynamics which uses the logically contradictory idea of an
equilibrium process. He concludes (Norton, op. cit. p. 44) that the
problem this presents is not “irresolvable” and offers his analysis
“as a serviceable resolution”. We offer ours in the same spirit.
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